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Electromagnetic wake fields and beam stability in slab-symmetric dielectric structures
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Several promising schemes for high-gradient acceleration of charged particles in slab-symmetric electro-
magnetic structures have been recently proposed. In this paper we investigate, by both computer simulation and
theoretical analysis, the longitudinal and transverse wake fields experienced by a relativistic charged particle
beam in a planar structure. We show that in the limit of an infinitely wide beam the net deflecting wake fields
vanishes. This result is verified in the limit of a large aspect ratieet beam by finite beam analysis based
on a Fourier decomposition of the current profile, as well as a paraxial wave analysis of the wake fields driven
by Gaussian profile beams. The Fourier analysis forms the basis of an examination of flute instability in the
sheet beam system. Practical implications of this result for beam stability and enhanced current loading in
short-wavelength advanced accelerators are discugS&a63-651X97)01611-3

PACS numbe(s): 41.75.Ht, 29.17#w, 29.27~a, 41.60.Bq

[. INTRODUCTION vide for a Fourier decomposition of the beam currenkin
again employing analytical and computational tools. These

The use of planar structures for advanced accelerator apesults are then compared in Sec. V to those obtained from
plications has been discussed recently in the context of botassumption of a beam current which is Gaussiarx,iran
metallic, disk-loaded millimeter wave structures for linearanalysis which is similar in methodology to that used on
collider applicationg1] and high gradient dielectric loaded- paraxial photon beam modes. In Sec. VI, the transverse BBU
structures excited by lasefg]. It has been noted that this instability of these beams arising from the dipole modelike
type of electromagnetic structure may have advantages ovéyake fields is analyzed in two limits: a single bunch “flute”
the usual axisymmetry, in ease of external power Couplindnstabi”ty, in which ripples in the beam transverse distribu-
and lowered space-charge ford®J. More importantly, it  tion self-amplify, and the multibunch instability due to long-
has also been specula@tp] that the transverse wake fields range wakes. We conclude in Sec. VII with a discussion of
associated with this class of structure are mitigated, thus dihe practical implications of our results for short-wavelength
minishing the beam breakuBBU) instability which typi-  accelerators, comparing the performance of slab-symmetric
cally limits the beam current in short-wavelength accelera@nd cylindrically symmetric systems from the points of view
tors. This instability arises from off-axis beam currentof beam loading and transverse stability.
excitation of dipole mode wake fields which in turn steer
trailing particles; a measure of the strength of this problem is
the amplitude of the transverse wake fields. In this paper we
show, by both theoretical and computational analysis, that Before we begin an analysis of wake fields which can be
the transverse wake-field amplitude is in fact diminished forexcited in slab-symmetric dielectric-loaded structures, we in-
asymmetric (o, >\o/27m> 0, where o indicates the rms troduce some general considerations concerning the possible
beam size, anldl =27 w/c is the vacuum wavelength of the forms of these fields. The first of these considerations con-
electromagnetic wayeelativistic bunched beams. Indeed, in cerns the relationship between the longitudinal and trans-
the limit of a structure and beam which is much largexin verse components of the fields, while the second concerns
than iny, the transverse wake fields vanish, in analogy to théhe constraints on functional form of the field components
monopole modes of axisymmetric structures. given by the Maxwell wave equations.

The organization of this paper is as follows. We begin in  The possible forms of the wake fields left behind a rela-
Sec. Il with some general results which constrain the postivistic charged particle, and the net forces imparted by these
sible forms of the wake fields, including the relationship of wake fields on trailing charged particles, are constrained by
the longitudinal to the transverse wake fields, and the addithe Maxwell equations, in ways that were initially described
tional implications on the form of the wake fields arising by Panofsky and Wenz¢B]. The original theorem given in
from the vacuum dispersion relation. Wake fields due toRef.[3] gives a relationship between the integrated longitu-
beams in the infinitely wide limit are analyzed in Sec. lll, dinal and transverse momentum kicks a particle receives as it
with a frequency domain analytical theory compared to comiraverses, in the constant-velocity, paraxial limit, an isolated
putational modeling in the time domain. In Sec. IV, as a firstmedium or device with an electromagnetic excitation. We
step in the analysis of finite beam effects, we will then pro-generalize this theorem in two way&l) we include fields

Il. WAKE FIELDS: GENERAL CONSIDERATIONS
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arising possibly from free charges, assuming that fields angh the regionR, A=0, when evaluated at the end points of

potentials vanish at infinity; and2) we give an alternate integration. This condition makes the first term inside the
form of the theorem applicable in the infinite medium or jntegrand in Eq(2.6) vanish, and we obtain

structure limit, which is of use when describing a very long
interaction between charged particles and their environment.
The assumptions leading to these generalized forms of the
Panofsky-Wenzel deflection theorem still include, explicitly,
that the particle receiving the kick travels parallel to the
axis, with a velocity which is constant. ) ] o .

The net Lorentz force on a charged particle consists of th&ince the integrated momentum kick fiedgh can be derived
sum of electric and magnetic components. In general, th&om a potential, its curl must vanish,

electric fieldE may be derived from a scalar potentia)

Ap=V : 2.7

q
Bec jR(IBbAz_ ¢)dz

and a vector potential4), VX(Ap)=0. (2.9
1 9A This expression is more usefully written to display the rela-
E=—-""_Vo. (2.1  tionship between the longitudinal and transverse kicks,
c Jdt
Inserting Eq.(2.1) into the Lorentz force equation, with the v 2(Ap.)
g EQ.(<. q , V,.(Ap,)= 0y (2.9

beam patrticle velocity,= ,ébc and chargey, we have

o It should be noted that this form of the deflection theorem is
F=q(F+B,xB)=qW, (2.20  much more general than that due to Panofsky and Wenzel, in
that can be applied to interactions in which free charges and
] ] ] currents come in contact with the beam, such as plasma wake
where, for a particle traveling parallel to theaxis, we may  fie|ds[4] and the beam-beam interactifsi. It states that, for
write a deflection kick to occur, there must be transverse variation
of the longitudinal kick imparted by the fields in the isolated
system under consideration.

The equivalent expression of the deflection theorem in the
case of continuously applied wave fields can also be derived.
Here we make the wave ansatz, that the fields’ longitudinal
R and temporal dependence can be expressed solely in terms of
We can obtain from Eqs2.1)—(2.3) an expression foW,  ;=z—yt. In this case we ignore all transients in the prob-
the net force per unit chargg as lem, which are in any event covered well by the form of the
theorem given in Eq(2.8). Explicitly examining the curl of
the net force on a particle traveling parallel to thaxis with
speedy,, we have

. R A
BbXB:ﬁbZX(VXA):Bb(V(AZ)_E)- (2.3

W 10A v
=TCo ot VoThe

A IA
VA~ —|.

(2.4)

VXW=VX(E+B,XB)=VXE~—(Bp-V)B=VXE
Using the assumed condition thay is constantan excellent ~
approximation for relativistic beamg@,=1) we can express By B
the partial derivatives in Eq2.4) in terms of the(convec- T
tive) full derivative inz,

by (2.10

Thus, forv,=v,, which is always assumed true for wake
1A oA 1 dA dA fields in the relativistic bgam Ii_mi(a wz_al_<e field satisfying
==ty === —==Bp 5= (2.5  the wave ansatz must satisfy this condiliome have that the
cioat 9zf ¢ dt dz wake field is conservative,

The full momentum transfer, through a regiBn due to the

net Lorentz force, can now be rewritten as W= xE+ 286 or VW _ W)
c at ' 74
A (211
- q dA .
Ap= BeC Jr —Bo az +V(BoA~ ) [dz (2.6 This form of the theorem basically states that when the wave

phase velocity is equal to the beam velocity, a transformation
_ R to the rest frame gives a purely electrostatic net force, which
For an isolated system whelfeandB are nonvanishing only is always conservative. Since we are concerned here with a
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translationally invariant(in z) structure, we will be more wide charge distribution, means that a horizontally oriented
interested in the form of the deflection theorem given by Equniform line charge(the simplest equivalent to a point
(2.13). It should also be noted that neither form of the de-charge with slab symmetnhas the equivalent field structure
flection theorem restricts the fields to those arising from theof an infinite, uniform sheet of charge. Thus, like the fields
wake of a charged particle beam. In fact, EB.9) is valid  arising from an infinite sheet, those arising from an ultrarela-
for all localized electromagnetic and electrostatic fieldstivistic line charge are independent of how far away from the
while Eqg. (2.11) applies to any interaction where the beamline charge the two sides of the structure are; the line charge
and wave phase velocity is ultrarelativistic, including wakedoes not couple asymmetrically to the structure, and no net
fields, as well as applied resonant accelerating fields such dsansverse force is possible.
those found in most electon linear accelerators. From the point of view of the Maxwell equations, the
Equations (2.9) and (2.11) imply that any transverse following argument also illuminates the physics of the fully
variation of the longitudinal wake fielelV, must produce a slab-symmetric case. With this symmetry, it is clear that

transverse wake fieltV/, with a nonvanishing longitudinal there must be no force in thedirection. This implies that
derivative. Since our analysis below will be concerned withthe fields are purely transverse magnefié/), because the
electromagnetic modes separable in Cartesian coordinates, @fistence of nonvanishing, implies a nonvanishing, , as
this point it is useful to recall the dispersion relation govern-the conditionV-B=0 in slab symmetry givesiB,/dy=
ing the variation of the field components, —dB,/9z=—ik,B,. To balance the nonvanishirgj,, and
give a vanishing horizontal force, we must have a nonvan-
) ishing E,, which is forbidden by symmetry. Thus we have
K2+ K2+ kzzﬂe(ﬂ) _ (2.12 rigorously s_hown that, as in t_he case of azimuthal symmetry,
Xy a pure TM field, for which it is straightforward to show also
implies thatB,=—E, . For an ultrarelativistic beam, this is

We will examine below the fields acting on charged particlesthe condition for which the net vertical force vanishes. It

. ) P : should be noted that for the isolated systems governed by Eq.
Wl?rlgrhelaa rt?('i)t'lzoczziatret}'((j: Ilen ;/r?guuz::('e??eije_hgs:nde(l?(:'\?'"th ( (2.9, that the condition imposed on the vertical force is a bit
i Ik :(':\;' llaner Ithese covr\:ditionls EEZ 12 Vieldsl It:gt weaker—it must be a constant, not necessarily zero. This,
_2“’ S, =l ld Yy however, clearly represents the case of a static fitld k,
ki=—kj; if one of the wave numbers is real, the other must

. ! _ =0 limit in the wave casge and thus is not of interest for
be imaginary and of equal amplitude. It should be noted th *

| licable ind d ¢ alyake-excited systems.
a more general statement, applicable independent of an as- i ghq1g pe emphasized again that the strict vanishing of
sumed symmetry, is that ultrarelativistic wake fields gene

2 "the transverse electromagnetic force is obtained only in the
ally obey the two-dimensional Laplace equat®iW;=0. limit of relativistic beam and phase velocities, and for infi-
The most interesting limit, from the point of view of the nitely wide inx slab-symmetric systems. The assumption of
present investigations, in discussing wake fields from ultelativistic velocities is quite good for nearly all situations of
trarelativistic beams in structures with Cartesian symmetry isnterest; deviations from force cancellation due to finite
the case wher&V, has no dependence on one of the transheam width are studied in detail below.
verse coordinates. This corresponds to the physical situation
where the structure and beam, and thus electromagnetic
wake fields, are infinite and invariant in this coordinate,
which we now designate as Then we havd, =0, which in The structure considered here, shown in Fig. 1, is a slab-
turn implies thatk,=0, and there isno transverse depen- symmetric dielectric-loaded geometry, with a dielectric ma-
dence on the longitudinal wake fieM/,. Equation(2.11)  terial of permittivity e>1 (u=1) in the regionsas<l|y|
then implies that the transverse wake field in this case has neb, a vacuum gap {=1), and conducting boundaries at
longitudinal derivative. Since all components of the wake|y|=b. This structure is chosen both for ease of calculation
field are by assumption harmonic mwith a nonvanishing and because of the recent interest displayed in this, as well as
wave numbek,= w/c, we deduce that the transverse wakesimilar, dielectric-loaded devicd®,6—8. In the usual fash-
field indeed must vanish in this limit. This vanishing of the ion, we initially assume that Cerenkov radiation-induced
transverse wake field under the condition of slab symmetryvake fields travel in the beam propagation directiprwith
(0/ox=0) can be seen as the analog of the vanishing of tha phase velocity equal to the beam velocity, and with both
transverse wake-field under the more familiar condition ofultrarelativistic, v 4= v,=c. Instead of the common Green-
azimuthal symmetry-¢/96=0, for azimuthal mode number function approach to calculation of the wake-field response,
m=0 (monopole fields. however, we will analytically calculate the wake fields by
This result can also be understood physically in a numbeuse of energy balance arguments. This approach requires
of ways, both from the point of view of coupling of the beam only that we determine the mode characteristics of the struc-
to the structure, and the explicit restrictions of the Maxwellture rather than evaluate rather difficult integrals in the
equations. In order for the beam to drive transverse wak&reen-function analysis. The full wake-field response is then
fields, it must couple to the structure in an asymmetric wayfound by performing a summation of the wake-field coupling
when the beam leaves the symmetyy=(0) plane. However, of each mode with a further convolution integral over the
the assumption of near speed-of-light beam velocity impliedbeam current profile.
that the beam self-fields collapse to a transversally oriented We begin by examining the limiting case of modepen-
Lorentz disc. This, combined with an assumed infinitelydence of the structure, beam, and resultant electromagnetic

IIl. WAKE FIELDS IN THE INFINITE BEAM CASE
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structure invariant in x
d

FIG. 1. (Color Schematic of a
slab-symmetric, dielectric-loaded
structure, with a vacuum gap half-

of _ar
y=0 — = j/é ————— L heighta, dielectric layers of per-
Z : mittivity €, and a thicknesb—a,
beam propagation

with metal boundaries dy|=Db.
direction

E Metal [0 Dielectric

mode, as was done in previous analyses of this two- E, n=Eoexdik,], (3.2
dimensional problenj9]. By assumption, the longitudinal

and temporal dependence of the fields of tile mode ex- . . . .
cited by the beam is of the form ebikc], where k, with no x or y dependence, whet&, is an arbitrary ampli-

=w,/c. As the excited modes in this limit are purely TM, tude, while in the dielectric{<y<b) we must have

we need only solve foE, in this analysis. We shall verify in

the following sections that this behavior is obtained in the E. =A E-exdik.Z1sim s b 3.2
limit of a very wide, yet finite-sized, beam. For the TM case 2= AnEo@XH IKnZ]SiM sy a(y ~b)1], 32
we need only additionally consider the vertical dependence

of the longitudinal electric field to determine the mode fieldswith s, ,=k,ye—1. Application of the boundary conditions
completely. Inside of the gagy|<a), we have aty=a (continuity of E, andD,,, which is trivially derived

5

0 5 1 15 20 25 30
z(u %}

FIG. 2. (Color) False color contour map &¥, for a slab-symmetric structure with a vacuum gap half-heigh2.5 um, a dielectriq(of
permittivity e=4) in the regionsa<|y|<b between the gap and the conducting boundarigdg|atb=5 um, from time-domain electro-
magnetic field solver. The ultrarelativistic beam distribution is infinite,imvith a line charge density=dq/dx= \2/7o,, infinitesimal in
y (aty=1um) and Gaussian iz with standard deviatiom,=0.5um, centered at abowt=27.5um. The color map is linear and in
spectral order, with red most negative, violet most positive, and blue-green the zero-field strength.
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2 ;
5 2{}11%} 15 20 25 30

FIG. 3. (Color) False color contour map di, for the structure and beam described in Fig. 1. The transverse wake field essentially
vanishes in the vacuum gap for an infinitely wiie x) beam.

from E, from the relationV - D=0) allows a determination C€@n equate this energy loss per unit length with the field

of the eigenvalue of each mode through the transcendent&€rgy per unit length left behind the ultrarelativistic linear
relation charge density as

V1 NEqec [ ((uerd— (S, 35

cofk,Vve—1l(b—a)]=k,a p 3.3

whereuey= 3[ e(EZ+EJ) +uHZ] is the electromagnetic en-
and the amplitude of the longitudinal electric field within the ergy density S,= (4W)_1Eny is the longitudinal Poynting
dielectric, flux, andH,= — €E, . The longitudinal wake field behind the

charge obtained from this expression is thus simply

A,=csdk,Ve—1(b—a)]. (3.9
4o\
W, n= Ez,ﬁmﬁm cogk,Z10(—¢), (3.6

Note that, for higher wave-number modes, E2}3) implies
that the phase variation in the dielectric must be approxi-
mately (W+3), and thusA, becomes large, as the field is where ® is the Heaviside function which explicitly shows
concentrated in the dielectric. the causal nature of the wake fields. It should be noted from
Once the fields have been determined, the response of thlkis expression that the longitudinal wake field is in general
structure to the passage of an ultrarelativistic, horizontalljlargest for the lowest frequency mode. For the slab-
oriented line charge of constant densityp,=Ad(y  symmetric, laser-pumped accelerator proposed in R&f.
—V¥p)6(¢)] within the vacuum gapyp<<a) can be calcu- however, the examples given have the device operating on a
lated by energy balance. It can be shown that, for a lineahigher-frequency mode of the structure. This could pose a
wake field[10] the net decelerating field on a line charge beam-loading problem for this and other overmoded laser
associated with a wake amplitude Bf is Eq.—=Ey/2. We  acceleration schemes, as the beam gains energy from a mode
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aﬂ:gﬂ iltt lgsggoggef;yufﬁ?] Eﬁél;‘orcmo%?&x::fenfgdt?e mOdeSwhere)\ is now the peak line charge density. This profile can

To obtain the full wake field response from a beam Withbe vuiwed as a Fourier component 9f a finite beam, i.e.,
an arbitrary longitudinal current profile[ po=\(y pe(X)—Epe_kXCOS{(XX), where we implicitly assume that the

—yo)f(¢)], we must perform a longitudinal convolution waveguide now has conducting sidewalls with separation in
over the point response, Ly (allowed wave numbers,=mm/L,, m=1,35...), and
the beam distribution ix is centered and symmetric within
these walls, as is shown in Fig. 5. Partial wake fields ob-
o tained from this harmonic analysis can therefore be summed
W,=, f f(L W, (¢ =)L’ (3.7 to find the complete wake fields.
n J¢ The longitudinal electric field associated with timeh
mode of the wake fields that the harmonic beam can couple

The predictions of Eq(3.7) have been verified by use of to has the following form in the vacuum region:

numerical simulation of the wake fields in a planar structure,
performed using a custom two-dimensional finite-difference
time domain electromagnetic simulation code. The beam is
assumed to be a rigid current distribution, infinitesimally thin

in the vertical §) direction and wi'Fh a fixed offset from the ¢ coshk,y) dependence indicates the monopolelike, or ac-
symmetry planey=0. The beam is also taken to be ultra- cglerating, componentindependent ofy in first order for
relativistic and traveling in the- z direction, with a Gaussian  gmail vertical offsetsand the sini,y) is the dipolelike, or
longitudinal of standard deviatioa,. The line charge den-  gefiecting component, which couples to the longitudinal field
sity of the beam inx is normalized toy2/ma, statcoulbm,  with strength approximately linear inand produces deflect-
with o in um. The fields are advanced using the standargng forces nearly independent gffor small vertical offsets.
leapfrog time integration algorithm. Figure 2 shows a falseNote that these modes have explicitly been described as
color contour map ofV, for a case similar to the infrared monopolelike and dipolelike—they are exact modes which

wavelength examples given in R¢g]|. One can clearly see gjsplay a specified multipole characteristic only in lowest
both the uniform speed-of-light phase fronts in the vacuumgger iny.

which displays the expected propagation angle. It should alsgre hybrid modes, we must find the longitudinal magnetic

be noted that, even though the beam current is asymmetrige|d to specify all the fields. In the gap region, this field has
with respect to thg=0 plane, the excited longitudinal wake the form

is nearly symmetric¢after propagation away from the simu-
lation boundary, indicating symmetric coupling of the beam

coshik,y)

Ezn=Eoexdik,{]X sinh(kyy)

X cogkyx). (4.2

fields to the dielectric and the accompanying suppression of B. —E-exdik.1x sinh(k,y) < sin(k.x 43
the transverse variations &, which lead to a transverse zn=EofX 1Knl] coshikyy) ko). (43
wake field.

We again have obviously taken the ultrarelativistic limit,
and in this case one must be very careful in finding the trans-
verse components of the fields in the vacuum region. They

Figure 3 shows the net vertical wake fiéld,=E,+ B,
excited by the beam in this case; one can seeWaessen-
tially vanishes inside of the vacuum gap. The lack of full
cancellation of + B, is due mainly to the electric and mag-
netic field centers in the calculation being one-half of both a

spatial and time step apart. Figure 4 displays a comparison . knEg ) coshik,y) i
between the simulation and analytical results gy in this Bxn= =1 5 eXHIKal1X) ginpei y) [ < SINCKaX),
case. The results are in good agreement, with some discrep- *
ancies due to the transient fields found in the time-domain K
simulation which are not present in the Fourier-based ana- . knEo . sinh(k,y)
lytical treatment. Eyn="1 2k, exlikng] X coshkxy)} X cogkx),
IV. WAKE FIELDS IN FINITE BEAMS: . n Ky ] sinh(k,y)
FOURIER ANALYSIS Bx,n:|E0<2_kX_ k.| EXHLikng]X cosr(kxy)}

With the method of determining the wake-field coupling x cogk,X)
established in Sec. Ill, we now turn our attention to wake X
fields in finite beams. We begin by generalizing the above
analysis to a beam of finite horizontal extent by examining . n x ) coslk,y)
the wake fields due to beams of a harmofiit x) charge Byn= _'EO(WJr K. exfik,d1X sink(kxy)]
profile <

X sin(kyX). (4.9

It should be noted that one cannot obtain the case of the
Pe.k, = MKy COLkyX) 8(y —Y0) 8(L), @D Lniform beam by taking the limik,=0 in Egs.(4.4), be-
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cause these expressions were obtained by assumingdgthat ! '

>k, /y, wherey=(1—8?)"2is the Lorentz factor of the Analytioal
beam. One also obtains immediately from E¢$.4) the —_ i - - - - Computational
gratifying result that the transverse forces on a relativistic 2 [
particle of chargeg, due to the modes described by Egs. §
(4.2) and(4.3), g
Z
. kx . BN
Fx,nEqu,nZQ(Ex,n_ By,n):I k_ EOqulkng]
n
cosh(kyy) ) r N . .
X{sinr(kxy) X sin(kyx), 0 5 10 15 20 25 30
z (jtm)
ke ) FIG. 4. Comparison of the values ®¥, (as a function ofz at
Fyn=aW, n=q(Ey n+By ) =—Ii k. Eoexdikn{] y=1 um) given by a time-domain electromagnetic field solver and
n the predictions of Eq93.6) and(3.7), for cases of Figs. 1 and 2.
sinh(k,y) « K 4
coshik,y) cogkux), 4.9 The fields in the dielectric, unlike those in the gap, can be

found by standard wave-guide analysis; for brevity their
vanish in the limit thak,=0, as we had found in the uni- derivati_on is omitted. Following _the same prescription used
form line charge k,=0) beam case. The form of this result to obtain Eqs(_3.1)—(3.3), we obtain a tran_scendental expres-
could have been directly deduced from the generalize§!on for the eigenvalues of the symmetric modes,
Panofsky-Wenzel theorem given by E.11). Equation
(4.5 reinforces the primary point of the present analysis.
Simply stated, for highly asymmetrifor rms beam sizes cof (e—1)ki—ki(b—a)]coth(kea)v(e—1)(k,/k,)?—1
o> oy, with associated,~ o, 1) beams in slab-symmetric 5
structures, transverse wake fields are strongly suppressed. In ~ _ (e—1) (ﬁ) 1=0
fact, since all wake fields are proportional to the linear 2¢ | ky '
charge density, the transverse wake fields scéd¢ constant
charge per bunghas ox‘z. This result mitigates one of the
major objections to use of high-frequency accelerating strucThe eigenvalues of the antisymmetric modes are simply ob-
tures, that the transverse wake fields scale prohibitively withained by substitution of tankg) for cothk.a) in Eq.(2.11).
frequency. This objection holds for cylindrically symmetric The longitudinal wake fields associated with the symmetric
structures, but can be greatly eased by use of slab structuresodes are

(4.6

Wz,n(kx):

4 coshik,yo)coshik,y)cogk,x)cogk,{) O (—¢)

sinH 2k,a] kx) 2 e cosH(k,a) sinff(k,a) kx)z
ok, |k, T | Ssb-a)] " coZsb—a)]||\s,) T2
sin2s,(b—a)] sint(k.a) e cost(k,a) kx)2 4ek,s, coshk,a)sinhk.a) _
X 4s, cod[s,(b—a)] sir[sy(b—a)]|\s,] ' K3(e—1) sins,(b—a)]cogs,(b—a)]|’

(4.7)

b—a N
2

those of the antisymmetric modes are obtained by substitu~ig. 6. The algorithm in the numerical simulations used in
tion of sinhk.y) for coshk.y), and vice versa, wheigtakes this case is based on discretizing the Maxwell equations after
on the values of, y, andy, in Eq. (4.7). Fourier transforming with respect ta The discrepancies in

A discrete sum and convolution integral similar to Eq. the two approaches due to transient effects are slightly more
(3.7 which sums over both symmetric and antisymmetricpronounced in this case, but again the agreement is quite
modes, as well as the beam charge distribution, must be pegood. Parametric studies performed with these simulations
formed to obtain the full wake fields for a beam of finite have also verified the suppression of transverse wake fields
extent in configuration space. The resultant expressions haver wide beams.
also been compared to simulations of this periodit x) The Fourier analysis of the beam current is most appro-
system, withw,, andW, obtained by both methods shown in priate for quantifying the behavior of the wake fields in, e.g.,
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Ly |

' >

FIG. 5. (Color) Dielectric waveguide with conducting sidewalls
of separation irL, for Fourier beam analysis, with allowed wave
numbersk,=m=/L, (m=1,35...).

millimeter-wave structuregl], which have sidewalls not too

distant from the beam. It is also, as will be seen below, mos

useful for analyzing the flute, or filamentation instability of *
asymmetric beams in slab-symmetric structures. This work
however, is motivated by the investigation of ultrashort
wavelength(infrared to optical accelerator structures such
as those discussed in REZ] in which the sidewalls are very _ ) _ ) _
distant from the beam. In order to handle this case, in which /G- 7- (Colon Diagram of the wake-field diffraction pattern in
the beam current is rather isolated horizontally, we now ex{ihe x-z plane, for Gaussian beam and wake-field model calcula-
amine the wake fields generated by a beam with a Gaussian

Diffracting wake
phase fronts

prOfiIe. It should be noted t.hat'adoption of this phySical V. EINITE-BEAM EFEFECTS: GAUSSIAN

model has the additional motivation that the Gaussian beam BEAM ANALYSIS

is commonly encountered in practice, as it is produced in )

systems in thermal equilibrium. We now turn to the analysis of the wakes produced by the

commonly encountered Gaussian horizontal beam profile as
it traverses the very wide dielectric structure shown sche-
matically in Fig. 1. The structure is assumed to be wide
enough such that the deviation in the wakes due to the finite
width effects can be ignored. In this limit, the solutions to the
wave equation can be found in the paraxial approximation by

g utilizing methods developed for analysis of Gaussian photon
: beams in lasers and optical transport systems.
E VP o
3 - VR ¥ In the present case, the beam current profile is assumed to
SRR have the form
L s L L L 2
R N Py =MW n)e M08y —yo)8(¢), (5.1
Z (Um) x,n

where w, ;=v20y, is, following the notation of Siegman
[11] for photon beam analysis, the horizontal particle beam
size, which is identical to the horizontal width of the wake
field extent inx directly behind the exciting line chargé (
=0-). This current will drive wake fields which are in
many ways similar to Gaussian photon beams, but with some
notable differences. In photon beam propagation, the fields
] are derivable from the paraxial wave equation, and are
Analylical “\] ] Gaussian in both transverse coordinates. For the structure
induced wake fields, the fields will have a Gaussian depen-
dence in only the direction, where the paraxial approxima-
tion in its familiar form (k,w,o>1) can still be employed.
FIG. 6. Comparison of the values & W, and (b) W, (as a Since the solution to the paraxial wave equation is separable
function of z at y=1 um) given by the time-domain electromag- N the X andy coordinates with similar types of solutions
netic field solver and the predictions of Ed6) and (12), for the ~ (Hermite-Gaussignfor each coordinate, one might suppose
identical structure and beam of Figs. 1-3, but with the beam chargthat the vertical dependence of the fields also be Gaussian. In
distribution modulated wittk,=0.4 wm™2, the limit thatw,>a, however, the vertical dependence of the

Wy (sim. units)

-------- Computational

a 5 10 15 20 25 30

z (um)
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fields is expected to be negligibl@f second order in the 2xy 5 2 i .
small parametem/w, o) and, as in the infinite beam and Bzn=Eon me‘[x MO IKIXTRal Dlexf ik g
structure case, the field has no significant vertical depen- xn

dence in the vacuum gap. + (D],

As mentioned above, the horizontal dependence of the
longitudinal electric field directly behind the infinitesimally
short beam takes the form of the current, . Eon
~exp(—X\g ). We note that this wake field can be viewed Een="17
as similar to the wake for the Fourier analysis, E42), in
that it has a local maximum ix. In fact, for smallk,y, +¢n(2)],
cosk.x), and expelewin) are locally equivalent if we sub-
stitute w, ,<k,/2. Once we have found this local equiva-
I_ency, in fa}qt, the Gauss_ian wakes can be found by subsyitu- Eyn Eon (kny)e—[lewin({)]—ik[leRn({)eXF{ikng
tion, exploiting the Fourier wakes as a model. The resulting ’ 2
fields can be verified as being solutions to Maxwell equa-

(|(nX)ef[X2/Win(§)]*ik[leRn(g)quikng

tions in the paraxial limit. T in(2)],

It should also be noted that the above comparison can also
be done for the antisymmetric wake field in Eg.2). The £ 5 2
dependence of the dipolelike Fourier wake becomes linearin g —j —on [1_(—)
y for smallk,y. A linearly dependent wake can be seen to be ’ 2 KqWy,n(£)

an acceptable solution to the paraxial wave equation if it is
noted that for smally, the first odd-symmetry Hermite-
Gaussian solution is also linear. Thus the antisymmetric
Gaussian  wake  can be  expressed af,

X (kny) ™ DO DTk + ()],

oy exp(—x_z/mé’n), which is equivalent to the dipole mode g =i Eon 1+ 2 )2
described in Eq(4.2). v 2 KnWy ()
The wake fields created by the beam are to be initially at 022 (0] IKDRIRAD] .
a waist, then diffract out behind the beam, as is shown sche- X(knx)e xn nexdiknd+ ¥n(2)].
matically in Fig. 7. The waist, as well as the entire field (5.3

pattern, moves forward iz at the speed of the beam,
=c. Itis again interesting to contrast this form with that of a ) ) )
laser beam. A focused laser beam envelope is minimized at B'e transverse forces associated with these fields,
spatially stationary waist, after which it diffracts away trans-
versely. While the electromagnetic waist of the wake fields is .
stationary in the beam rest frame, not the laboratory frame, Fn=0qWxn=0(Exn=Byn)
the laser and wake fields hold in common the expected be- 2%
havior that if one travels with a phase front, diffraction of the =iEg m e
fields is observed as time advances. nix.n

The full longitudinal(symmetri¢ wake field in the struc-
ture can be found from paraxial wave solutions to be

,x2/2a§exqi knl+ ¥(2)],

. 2y
Fyn=aW, n=0q(Ey n+Byn)=—iEq m
Eyn=Egne DMn 1R Dlayif ik 4 yrn(2)] X & 27 exfiknl+ Y(2)], (5.4

again will diminish for very wide beams. This result is in
good agreement with the analysis of the Fourier beam case,
wherey, () =tan X({/z,) is the Guoy phase shift of a given as well as the limiting infinite beam case.
mode, zg = mw2 ,(0)/\,=k,o? is its Raleigh(diffraction) Employing the same techniques as used to derive Egs.
length,R,(¢) = ¢{[1+ (zr.n!2)?] is the local radius of curva- (3.3) and(4.6), we finq the tran;cendental eigenvalue expres-
ture of the phase fronts, amve () =w2 1+ ({/zg,,)?] is  Sion for the symmetric Gaussian mode to be
the horizontal spot size. It should be emphasized that at the
point of creation directly behind the beam the diffracting 12
wake field is at a waist. Here the beam size is a minimum, 7x cox{((e—l)kz— i (b—a)
and the Guoy phase shift is most rapidly changing. In light of a A 0>2<
the dispersion relation Eq2.12), this phase shift can be
viewed as equivalent to a longitudinal wave-number shift in _ (e-1) (Ko, )2+ 1=0 (5.5
the region of largest horizontal wave-numbegr. 2¢ M ' '
Using the Fourier wake analysis as a guide, we found the
remaining fields in the gap: The longitudinal wake-field amplitude is similarly given by

\/(6_ 1)(kn0'x)2_1




417)\0 g

s 1+ 1+ & Ly ° L € 45,2 sal b-a sifs,(b—a)]
A 282 T 32\ IR2 T 2) T |sifisb-a)] T 2@oke—1) \sifisb-a)] sin2s(b-a)] ' codls,b-a)]) | 2 P
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2 4s,

2 2
X[ a 1 ( &S 4sa a , 56

207 codis,b-a)]  Ke-1) |sifis,b-a)]  oZsinzsb-a)]  oZcodis,(b-a]

and was found using energy balance. The wake fields coming off the beam initially have all energy flowing in the longitudinal direction. As they start to diffract, energy
flow is transferred to the transverse directions; thus it was necessary to calculate the wakes when at a waist.

As mentioned above, the Gaussian modes for an antisymmetric profilean also be found. The form of the longitudinal electric field is

m
m
m
9
Pyl
V2 0O 01 R Dy e
E=Eo € " " exfiknd+ ¥n({)]- 67 =
o0 &
Z
m
Following the prescription outlined above, the transverse wakes 9]
:
2V2X . m
FmieBy g o & DM exefik -+ yy(0), |
knwx,n(g) m
)
0]
>
V2 , zZ
= DG (1= kDCRN D afi
Fy=—lek ko@D " exrliknd+ ¥n({)] (5.8 PUH
2

have an associated amplitude of

W _ 47T)\0
11 a1 sa’ 1 ea? 4sa 4 ) b—a sirs,(b—a)]
a5+ + +1)+ _ + 5 y - + +
2 2] 30% | 2k0% o? sirs(b—a)] 2(e—1) ot sif[s(b—a)] oZsin2s(b—a)] cos[s(b—a)]/| 2 4s
o 1 1 ssta’ 4sa 1 b—a sins,(b—a)]
2codlsb-a)]  Ke—1) |\ sifisb-a)]  oZsnzsb-a)]  oZcodisb-al | 2 45, | (5.9
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and we again observe that for wide beams the dipolelike
mode transverse wake fields are considerably reduced.

This Gaussian wake analysis can easily be extended to
include arbitrary beam profiles by using Hermite-Gaussian
functions [11] as a basis set to represent the beam. This\/herewglzaywy is the wake function produced by a har-
allows the analysis of beams which are modulated,ias in ~ monic beam perturbation with wave numberand is pro-
the Fourier case, but with finite extent and no reference tortional to thedF, ,,/d, given by Eq.(4.5), andkg, is the
existence of sidewalls. A useful result of this analysis is thabetatron wave number associated with the applied vertical
a beam withN horizontal modulations has an effective Ray- focusing. Since we are considering beams with small phase
leigh length which is shortened by a factor ¢N. Thus  extent(in the fundamental accelerating way&V, o sin(k,¢)
higher frequency-modulations on a beam create wakes whickkn{. Following Whittum, the asymptotic flute amplitude for
diffract out more quickly, and the long range wake field is @ coasting beamy(=constant) due to theth antisymmetric
eventually dominated by the lowest spatial frequefsignple ~ Mode is found by a saddle-point analysis of E&j1) to be,

d

¢
2yt 0= [ arwye -z,

(6.9

Gaussiah component. in the limit of strong focusingdinstability growth lengthlL,
satisfyingkz, L 4> 1),
3v3 (Y, jzr?\ 1B
VI. TRANSVERSE INSTABILITIES f(z,t)ocexpT K , (6.2
IN ASYMMETRIC BEAMS Yepy
With the analysis of the wake-field excitation complete,Where
the wake-field-induced transverse instabilities in very asym- r N oF
metric beams can now be analyzed. These instabilities fall Y, n:_ez c2k, —2= (6.3
A ¥ allfo 00 ay

into two categories: the short-range, single-bunch beam
breakup(BBU) instability which tends to ripple or “flute” | s the classical electron radius, ahdis the number of
the charge distribution i with a fairly large wave number glectrons per bunch. As an example, relevant to experimen-
(ke~a~*), which couple most strongly to the structure but tation in a 10.6xm wavelength accelerator similar in design
diffract away quickly, and the long-range, multibunch BBU to that considered in Ref2], we choose a structure and
instability, in which the Gaussian wakes of the bunches as Beam with a=5um, b=6.05um, o,=100um, Kgy
whole, rather than horizontal Fourier structure of the=5cm ! (equilibrium beta functionBy = kl;ylzz mm), N
bunches, are dominant. These instabilities are analyzed fol= 10°, andy=100. Using the mode with highest coupling to
lowing the formalisms developed for the flute instability by the dipolelike moddneark,~a~!) we find a growth length
Whittum [12], using our results on the Fourier componentsof L,=8 cm, which justifies the strong focusing approxima-
of the wakes, and for the multibunch BBU by Thompson andtion.

Ruth[13] using the Gaussian wake analysis of Sec. V. It should be possible to stabilize this instability by use of
We begin by examining the flute instability, employing horizontal focusing of sufficient strength to mix the horizon-
the physical and mathematical model of the beam dynamictl positions of the beam particles in a time shorter that the

developed in Ref[12] to analyze this type of instability in growth time. This is quantified by conditiokgL>1,
the dense beam-plasma interaction. In this model, the beamihich implies that the horizontal betatron wave number must
is viewed in lowest order as a uniform slab lying symmetri-scaled to the vertical by the ratig L, which in our ex-
cally about the symmetry plane of the device. A more de-ample yieldskz=Kkpg,/40.
tailed analysis, in which the beam is not taken to be uniform This ratio may appear to be arbitrarily chosen, but it in
in x, with a harmonic perturbation, but instead is modeled adact may be constrained by other considerations—primarily
a Gaussian with periodic perturbations may be performed byhat the beam be in thermal equilibrium. Because the tran-
use of Hermite-Gaussian functions. It should be emphasizederse wakes in this case couple theandy motion in a
that we do not mean to imply that we are discussing thenonlinear fashion, one may expect that if the temperature is
physically uninteresting case of a uniform sheet beam with dlifferent in the two dimensions that it would soon equalize.
sharp cutoff horizontal edge, which would have significantin terms of standard beam characteristics, this proposed re-
Fourier components which would drive BBU instability. quirementT,=T, is equivalent toe,/Beqx= €y/Beqy, OF
This type of beam would not in general be found in, e.g.,ex= €y(Kgy/Kg) =~ €,(KgyLg). This in turn implies a con-
high-energy linear collider beams derived from dampingstraint on the beam sizes, a&,/o,= kg€, /Kg e,
rings, which are approximately thermally equilibrated in all ~kg L4, which is approximately 40 in our case. This is a
phase planes, giving Gaussian beam profiles. Keeping theorderline problem for our example, in that,~ o,/40
model’s applicability in mind, a vertical perturbatidifz, 7) =2.5um, which only one-fourth of the total vertical gap in
of a small amplitude and harmonigvith wavenumberk,)  the structure. This potential problem, which demands rigor-
dependence im is assumed, which can be shoji?] to be  ous analysis in future work, certainly emphasizes the need to
equivalent to a harmonic charge-density perturbation. Théave very strong vertical focusing in the device.
wake fields arising from this perturbation can then be calcu- The problem of instabilities due to long range wake fields
lated using the results of Sec. IV. can be studied using the multibunch BBU formalism previ-
To calculate the evolution of the flute amplitudéz, 7), ously developed by Thompson and R{il3]. We employ a
we write the beam breakup equatidi®] strongly damped wake approximation, the daisy-chain
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model, where a bunch is only affected by the wake fields TABLE I. Comparison multibunch BBU of a cylindrical and
from the previous bunch. For optical accelerators, the horislab-symmetric linear accelerator with an average accelerating gra-
zontal diffraction of the wakes make this model promising;dient of 1 GeV/m, fundamental wavelength\,=2m/k,

on the other hand, since each bucket will undoubtedly be=10.6um, a=2.5um, and beam loading quality facto®
filled in such a short wavelength device, the wakes must be?_lOOO; only the_lowest frequency dipolel_ike mode is considered,
very heavily damped or have large frequency spreads in thwith o,=100um in the slab case. Comparlsorll parameters: average
relevant modes for the model to be accurate. We additionallgu"™ent eNdA,, transverse wake strengt;/eN, and BBU
assume that the high-frequency wakes responsible for th@oWth lengthl,.

single-bunch flute instability are ignorable from the multi-

bunch point of view, again because the enhanced diffraction Slab case Cylindrical case

of these components of the wake fields quickly dampen theipverage current 490 mA 16 mA

effect on the bunch train. . ~ Transverse wake 30 V/(mn? fC) 10° V/(mn? fC)
In order to include the effects of acceleration and adia- (dominant dipole

batic damping, it is convenient to define an effective distanc&yitiounch BBU 15 cm 1.4 cm

zeﬁ=k§j(0)fékgy(z’)dz , Where the betatron wave number growth length
now is considered as a function a distazodown the struc-
ture. Assumingk(z)=+/y(0)/y(z)k(0), with the approxi-
mation that the energy is much greater at the end of the Ajernatively, if we allow the beam charge to be varied,
structure than at the beginning, the effectzlvg distance besne can see that, by spreading the beam out in one dimension
CoMesZ=2yyoz/y', where y'=eEq/mec” is the nor-  \yhile keeping efficient coupling of the accelerating wave to
mallzgd accelerating gr_adle'nt. The equations of motion in theha structure in the narrow dimension, much more charge per
effective length approximation becom&3| bunch can be accelerated. This comes at a price, of course,
72 which is that the electromagnetic stored energy is much
% + kéyylz 0, larger in the case of a slab-symmetric device as opposed to a
0Zes cylindrically symmetric accelerator of equivalent beam hole
dimension—the shunt impedance of the slab-symmetric ac-
#Yn .,  Nre 1 4F, celerator is very low. At optical or infrared wavelengths,
(?z_gﬁ - Byy”_T 2moy W Yn-1, (6.4 however, the stored energy is not a problem, as laser powers
large enough to drive ultrahigh accelerating fields in slab-
where the first bunch is explicitly unaffected by transversesymmetric structure are easily obtainable, and the useful field
wake fields. Assuming solutions of the form=A,e'*?, itis ~ amplitudes are limited by structure breakdown consider-
found the deflecting amplituded, grows with effec- ations[15]. In the slab-symmetric case the low shunt imped-
tive growth length is approximately Lg  ance can be understood as being due to a large number of
=4ma,(yINrk(dF,/dy) 1. We again use the parameters  equivalent cylindrically symmetric accelerators operating in
=100um, N=10°, andy(0)=100, which assuming every parallel, yielding a small impedance.
optical accelerating “bucket” is filled, and that the acceler- This multiple-channel, parallel accelerator is a useful
ating gradient iseE,.=1 GeV/m, implies we have a beam analogy for helping understand the transverse wake fields as
loadedQ=10°, similar to the expected unloade of the  well. It is true that the transverse impedance that the beam
optical structure itselff2]. For kg,=5cm*, the growth “sees” at the highest transverse coupling to the structure
length of the multibunch BBU instability is 15 cm. This is (k,~a™?') is very close to that of the cylindrical structure of
relatively gentle growth, which can be controlled by a vari-the same vacuum radius, and so the beam breakup is
ety of methodg13], including detuning of the dipole mode similar—the flute instability is nearly identical for the por-
frequencies, and tuning the strongest frequencies near halion of the beam withinA x~ 2a as for single-bunch BBU for
integer harmonics of the accelerating frequency, thus placinghe same charge beam in the equivalent cylindrically sym-
the bunches near zero crossings of the dipole-mode wakesmetric structure. The advantage of the slab-symmetric struc-
ture is twofold, however; it allows much more beam charge
VII. DISCUSSION to be accelerated for the equivalent BBU problem, and the
flute BBU can be stabilized by a mechanism, horizontal mix-
The results we have obtained above allow much greatehg, that is unavailable in the cylindrically symmetric struc-
freedom in imagining linear accelerator designs at muchyre. In addition, if the flute instability is stabilized, then the
shorter wavelengths, as they mitigate the scalij of the  multibunch BBU is much more stable, for equivalent beam
transverse wake Coupling strength which limits the current iﬂoading, than the Cy|indrica||y Symmetric accelerator.
these devices, fromV] «<k?«k3 (k, is the transverse wave  To illustrate this point, we give a list of parameters de-
number of the mode, analogous to our presentin the  scribing two equivalent designs with slab and cylindrical ge-
cylindrical case, tOWiOCk)%OCU)(_S (at a constant beam ometry, respectively, in Table I. In both designs, we obtain a
charge, independent of accelerating wavelength in the slabinear accelerator with an average accelerating gradient of 1
geometry for the case of multibunch BBU. The scaling of theGeV/m, wavelengthh =2 7/ky=10.6 um, the beam half-
flute instability is is a bit less dramatiwiockfoca;zko, and gapa=5um, and beam loading quality fact@=1000. It
indeed we see that the growth of the flute instability is a bitcan be seen that in the slab case, with a beam widitx,of
stronger than for multibunch BBU. =100um, much higher average current can be accelerated
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at this beam loading level, and it can be propagated stably The results we have presented allow more serious consid-
longer. eration of short-wavelength advanced accelerator schemes,
which have potential application to linear colliders as well as
VIII. CONCLUSIONS radiation-producing accelerataffsee-electron lasers, Comp-
) ) ) ton scattering x-ray sources, gtcThese advantages, we be-

In conclusion, we have theoretically and computationallyjieve, present significant motivation for further theoretical
analyzed the transverse wake fields in a slab-symmetrigng experimental work in this field; we are presently work-
dielectric-loaded structure. We have found and quantified thqang on a test of these results using asymmetric, high charge
suppression of the transverse wake fields for wide beams iBeams, which produce cm wavelength wake fields, as well as

these structures, using infinite beam, harmonic beam, angh improved analysis of instabilities in slab-symmetric accel-
Gaussian beam models, and made an analysis of the beaffgigrs.

breakup instability in this type of structure. The additional
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