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Electromagnetic wake fields and beam stability in slab-symmetric dielectric structures
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Several promising schemes for high-gradient acceleration of charged particles in slab-symmetric electro-
magnetic structures have been recently proposed. In this paper we investigate, by both computer simulation and
theoretical analysis, the longitudinal and transverse wake fields experienced by a relativistic charged particle
beam in a planar structure. We show that in the limit of an infinitely wide beam the net deflecting wake fields
vanishes. This result is verified in the limit of a large aspect ratio~sheet! beam by finite beam analysis based
on a Fourier decomposition of the current profile, as well as a paraxial wave analysis of the wake fields driven
by Gaussian profile beams. The Fourier analysis forms the basis of an examination of flute instability in the
sheet beam system. Practical implications of this result for beam stability and enhanced current loading in
short-wavelength advanced accelerators are discussed.@S1063-651X~97!01611-5#

PACS number~s!: 41.75.Ht, 29.17.1w, 29.27.2a, 41.60.Bq
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I. INTRODUCTION

The use of planar structures for advanced accelerator
plications has been discussed recently in the context of b
metallic, disk-loaded millimeter wave structures for line
collider applications@1# and high gradient dielectric loaded
structures excited by lasers@2#. It has been noted that thi
type of electromagnetic structure may have advantages
the usual axisymmetry, in ease of external power coup
and lowered space-charge forces@2#. More importantly, it
has also been speculated@1,2# that the transverse wake field
associated with this class of structure are mitigated, thus
minishing the beam breakup~BBU! instability which typi-
cally limits the beam current in short-wavelength accele
tors. This instability arises from off-axis beam curre
excitation of dipole mode wake fields which in turn ste
trailing particles; a measure of the strength of this problem
the amplitude of the transverse wake fields. In this paper
show, by both theoretical and computational analysis,
the transverse wake-field amplitude is in fact diminished
asymmetric~sx@l0/2p.sy , where s indicates the rms
beam size, andl052pv/c is the vacuum wavelength of th
electromagnetic wave! relativistic bunched beams. Indeed,
the limit of a structure and beam which is much larger inx
than iny, the transverse wake fields vanish, in analogy to
monopole modes of axisymmetric structures.

The organization of this paper is as follows. We begin
Sec. II with some general results which constrain the p
sible forms of the wake fields, including the relationship
the longitudinal to the transverse wake fields, and the a
tional implications on the form of the wake fields arisin
from the vacuum dispersion relation. Wake fields due
beams in the infinitely wide limit are analyzed in Sec. I
with a frequency domain analytical theory compared to co
putational modeling in the time domain. In Sec. IV, as a fi
step in the analysis of finite beam effects, we will then p
561063-651X/97/56~6!/7204~13!/$10.00
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vide for a Fourier decomposition of the beam current inx,
again employing analytical and computational tools. The
results are then compared in Sec. V to those obtained f
assumption of a beam current which is Gaussian inx, an
analysis which is similar in methodology to that used
paraxial photon beam modes. In Sec. VI, the transverse B
instability of these beams arising from the dipole model
wake fields is analyzed in two limits: a single bunch ‘‘flute
instability, in which ripples in the beam transverse distrib
tion self-amplify, and the multibunch instability due to long
range wakes. We conclude in Sec. VII with a discussion
the practical implications of our results for short-waveleng
accelerators, comparing the performance of slab-symme
and cylindrically symmetric systems from the points of vie
of beam loading and transverse stability.

II. WAKE FIELDS: GENERAL CONSIDERATIONS

Before we begin an analysis of wake fields which can
excited in slab-symmetric dielectric-loaded structures, we
troduce some general considerations concerning the pos
forms of these fields. The first of these considerations c
cerns the relationship between the longitudinal and tra
verse components of the fields, while the second conce
the constraints on functional form of the field compone
given by the Maxwell wave equations.

The possible forms of the wake fields left behind a re
tivistic charged particle, and the net forces imparted by th
wake fields on trailing charged particles, are constrained
the Maxwell equations, in ways that were initially describ
by Panofsky and Wenzel@3#. The original theorem given in
Ref. @3# gives a relationship between the integrated longi
dinal and transverse momentum kicks a particle receives
traverses, in the constant-velocity, paraxial limit, an isola
medium or device with an electromagnetic excitation. W
generalize this theorem in two ways:~1! we include fields
7204 © 1997 The American Physical Society
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56 7205ELECTROMAGNETIC WAKE FIELDS AND BEAM . . .
arising possibly from free charges, assuming that fields
potentials vanish at infinity; and~2! we give an alternate
form of the theorem applicable in the infinite medium
structure limit, which is of use when describing a very lo
interaction between charged particles and their environm
The assumptions leading to these generalized forms of
Panofsky-Wenzel deflection theorem still include, explicit
that the particle receiving the kick travels parallel to thez
axis, with a velocity which is constant.

The net Lorentz force on a charged particle consists of
sum of electric and magnetic components. In general,

electric fieldEY may be derived from a scalar potential~f!

and a vector potential (AY ),

EY 52
1

c

]AY

]t
2¹Y f. ~2.1!

Inserting Eq.~2.1! into the Lorentz force equation, with th

beam particle velocitynW b[bW bc and chargeq, we have

FY 5q~FY 1b̄b3BY ![qWW , ~2.2!

where, for a particle traveling parallel to thez axis, we may
write

bb3BY 5bbẑ3~¹Y 3AY !5bbS ¹Y ~Az!2
]AY

]z
D . ~2.3!

We can obtain from Eqs.~2.1!–~2.3! an expression forWY ,
the net force per unit chargeq, as

WY 52
1

c

]AY

]t
2¹Y f1bbF¹Y ~Az!2

]AY

]z
G . ~2.4!

Using the assumed condition thatbb is constant~an excellent
approximation for relativistic beams,bb>1! we can express
the partial derivatives in Eq.~2.4! in terms of the~convec-
tive! full derivative in z,

1

c
S ]AY

]t
1nb

]AY

]z
D 5

1

c

dAY

dt
5bb

dAY

dz
. ~2.5!

The full momentum transfer, through a regionR, due to the
net Lorentz force, can now be rewritten as

DpY 5
q

bbc E
R
F2bb

dAY

dz
1¹Y ~bbAz2f!Gdz. ~2.6!

For an isolated system whereEW andBW are nonvanishing only
d

t.
he
,

e
e

in the regionR, AW 50, when evaluated at the end points
integration. This condition makes the first term inside t
integrand in Eq.~2.6! vanish, and we obtain

DpY 5¹Y F q

bbc E
R
~bbAz2f!dzG . ~2.7!

Since the integrated momentum kick fieldDpY can be derived
from a potential, its curl must vanish,

¹Y 3~DpY !50. ~2.8!

This expression is more usefully written to display the re
tionship between the longitudinal and transverse kicks,

¹Y '~Dpz!5
]~DpY'!

]z
. ~2.9!

It should be noted that this form of the deflection theorem
much more general than that due to Panofsky and Wenze
that can be applied to interactions in which free charges
currents come in contact with the beam, such as plasma w
fields@4# and the beam-beam interaction@5#. It states that, for
a deflection kick to occur, there must be transverse varia
of the longitudinal kick imparted by the fields in the isolate
system under consideration.

The equivalent expression of the deflection theorem in
case of continuously applied wave fields can also be deriv
Here we make the wave ansatz, that the fields’ longitudi
and temporal dependence can be expressed solely in term
z5z2nft. In this case we ignore all transients in the pro
lem, which are in any event covered well by the form of t
theorem given in Eq.~2.8!. Explicitly examining the curl of
the net force on a particle traveling parallel to thez axis with
speednb , we have

¹Y 3WW 5¹Y 3~EY 1bW b3BY !5¹Y 3EY 2~bW b•¹Y !BY 5¹Y 3EY

1
bb

nf

]BY

]t
. ~2.10!

Thus, for nb5nf , which is always assumed true for wak
fields in the relativistic beam limit~a wake field satisfying
the wave ansatz must satisfy this condition!, we have that the
wake field is conservative,

¹Y 3WW 5¹Y 3EY 1
1

c

]BY

]t
50W , or ¹Y 'Wz5

]~WW '!

]z
.

~2.11!

This form of the theorem basically states that when the w
phase velocity is equal to the beam velocity, a transforma
to the rest frame gives a purely electrostatic net force, wh
is always conservative. Since we are concerned here wi
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7206 56A. TREMAINE, J. ROSENZWEIG, AND P. SCHOESSOW
translationally invariant~in z! structure, we will be more
interested in the form of the deflection theorem given by E
~2.11!. It should also be noted that neither form of the d
flection theorem restricts the fields to those arising from
wake of a charged particle beam. In fact, Eq.~2.9! is valid
for all localized electromagnetic and electrostatic fiel
while Eq. ~2.11! applies to any interaction where the bea
and wave phase velocity is ultrarelativistic, including wa
fields, as well as applied resonant accelerating fields suc
those found in most electon linear accelerators.

Equations ~2.9! and ~2.11! imply that any transverse
variation of the longitudinal wake fieldWz must produce a
transverse wake fieldWW ' with a nonvanishing longitudina
derivative. Since our analysis below will be concerned w
electromagnetic modes separable in Cartesian coordinate
this point it is useful to recall the dispersion relation gove
ing the variation of the field components,

kx
21ky

21kz
25meS v

c D 2

. ~2.12!

We will examine below the fields acting on charged partic
which are~1! located in vacuum, som5e51; and~2! with
ultrarelativistic particle and wake-field phase velocities (nb
>v/kz>c). Under these conditions, Eq.~2.12! yields that
kx

252ky
2; if one of the wave numbers is real, the other mu

be imaginary and of equal amplitude. It should be noted t
a more general statement, applicable independent of an
sumed symmetry, is that ultrarelativistic wake fields gen

ally obey the two-dimensional Laplace equation¹W '
2 Wi>0.

The most interesting limit, from the point of view of th
present investigations, in discussing wake fields from
trarelativistic beams in structures with Cartesian symmetr
the case whereWz has no dependence on one of the tra
verse coordinates. This corresponds to the physical situa
where the structure and beam, and thus electromagn
wake fields, are infinite and invariant in this coordina
which we now designate asx. Then we havekx50, which in
turn implies thatky50, and there isno transverse depen
dence on the longitudinal wake fieldWz . Equation~2.11!
then implies that the transverse wake field in this case ha
longitudinal derivative. Since all components of the wa
field are by assumption harmonic inz with a nonvanishing
wave numberkz5v/c, we deduce that the transverse wa
field indeed must vanish in this limit. This vanishing of th
transverse wake field under the condition of slab symme
(]/]x50) can be seen as the analog of the vanishing of
transverse wake-field under the more familiar condition
azimuthal symmetry—]/]u50, for azimuthal mode numbe
m50 ~monopole! fields.

This result can also be understood physically in a num
of ways, both from the point of view of coupling of the bea
to the structure, and the explicit restrictions of the Maxw
equations. In order for the beam to drive transverse w
fields, it must couple to the structure in an asymmetric w
when the beam leaves the symmetry (y50) plane. However,
the assumption of near speed-of-light beam velocity imp
that the beam self-fields collapse to a transversally orien
Lorentz disc. This, combined with an assumed infinite
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wide charge distribution, means that a horizontally orien
uniform line charge~the simplest equivalent to a poin
charge with slab symmetry! has the equivalent field structur
of an infinite, uniform sheet of charge. Thus, like the fiel
arising from an infinite sheet, those arising from an ultrare
tivistic line charge are independent of how far away from t
line charge the two sides of the structure are; the line cha
does not couple asymmetrically to the structure, and no
transverse force is possible.

From the point of view of the Maxwell equations, th
following argument also illuminates the physics of the fu
slab-symmetric case. With this symmetry, it is clear th
there must be no force in thex-direction. This implies that
the fields are purely transverse magnetic~TM!, because the
existence of nonvanishingBz implies a nonvanishingBy , as

the condition¹W •BW 50 in slab symmetry gives]By /]y5
2]Bz /]z52 ikzBz . To balance the nonvanishingBy , and
give a vanishing horizontal force, we must have a nonv
ishing Ex , which is forbidden by symmetry. Thus we hav
rigorously shown that, as in the case of azimuthal symme
a pure TM field, for which it is straightforward to show als
implies thatBx52Ey . For an ultrarelativistic beam, this i
the condition for which the net vertical force vanishes.
should be noted that for the isolated systems governed by
~2.9!, that the condition imposed on the vertical force is a
weaker—it must be a constant, not necessarily zero. T
however, clearly represents the case of a static field~the kz
50 limit in the wave case!, and thus is not of interest fo
wake-excited systems.

It should be emphasized again that the strict vanishing
the transverse electromagnetic force is obtained only in
limit of relativistic beam and phase velocities, and for in
nitely wide in x slab-symmetric systems. The assumption
relativistic velocities is quite good for nearly all situations
interest; deviations from force cancellation due to fin
beam width are studied in detail below.

III. WAKE FIELDS IN THE INFINITE BEAM CASE

The structure considered here, shown in Fig. 1, is a s
symmetric dielectric-loaded geometry, with a dielectric m
terial of permittivity e.1 (m51) in the regionsa<uyu
<b, a vacuum gap (e51), and conducting boundaries a
uyu5b. This structure is chosen both for ease of calculat
and because of the recent interest displayed in this, as we
similar, dielectric-loaded devices@2,6–8#. In the usual fash-
ion, we initially assume that Cerenkov radiation-induc
wake fields travel in the beam propagation directionz, with
a phase velocity equal to the beam velocity, and with b
ultrarelativistic,nf5nb>c. Instead of the common Green
function approach to calculation of the wake-field respon
however, we will analytically calculate the wake fields b
use of energy balance arguments. This approach requ
only that we determine the mode characteristics of the st
ture rather than evaluate rather difficult integrals in t
Green-function analysis. The full wake-field response is th
found by performing a summation of the wake-field coupli
of each mode with a further convolution integral over t
beam current profile.

We begin by examining the limiting case of nox depen-
dence of the structure, beam, and resultant electromagn
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FIG. 1. ~Color! Schematic of a
slab-symmetric, dielectric-loaded
structure, with a vacuum gap half
height a, dielectric layers of per-
mittivity e, and a thicknessb2a,
with metal boundaries atuyu5b.
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mode, as was done in previous analyses of this tw
dimensional problem@9#. By assumption, the longitudina
and temporal dependence of the fields of thenth mode ex-
cited by the beam is of the form exp@iknz#, where kn
5vn /c. As the excited modes in this limit are purely TM
we need only solve forEz in this analysis. We shall verify in
the following sections that this behavior is obtained in t
limit of a very wide, yet finite-sized, beam. For the TM ca
we need only additionally consider the vertical depende
of the longitudinal electric field to determine the mode fie
completely. Inside of the gap (uyu,a), we have
-

e

Ez,n5E0exp@ iknz#, ~3.1!

with no x or y dependence, whereE0 is an arbitrary ampli-
tude, while in the dielectric (a,y,b) we must have

Ez,n5AnE0exp@ iknz#sin@sy,n~y2b!#, ~3.2!

with sy,n5knAe21. Application of the boundary condition
at y5a ~continuity of Ez andDy , which is trivially derived
FIG. 2. ~Color! False color contour map ofWz for a slab-symmetric structure with a vacuum gap half-heighta52.5mm, a dielectric~of
permittivity e54! in the regionsa,uyu,b between the gap and the conducting boundaries atuyu5b55 mm, from time-domain electro-
magnetic field solver. The ultrarelativistic beam distribution is infinite inx, with a line charge densityl5dq/dx5A2/psz , infinitesimal in
y ~at y51 mm! and Gaussian inz with standard deviationsz50.5mm, centered at aboutz527.5mm. The color map is linear and in
spectral order, with red most negative, violet most positive, and blue-green the zero-field strength.
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FIG. 3. ~Color! False color contour map ofWy for the structure and beam described in Fig. 1. The transverse wake field esse
vanishes in the vacuum gap for an infinitely wide~in x! beam.
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from Ez from the relation¹W •DW 50! allows a determination
of the eigenvalue of each mode through the transcende
relation

cot@knAe21~b2a!#5kna
Ae21

e
, ~3.3!

and the amplitude of the longitudinal electric field within th
dielectric,

An5csc@knAe21~b2a!#. ~3.4!

Note that, for higher wave-number modes, Eq.~3.3! implies
that the phase variation in the dielectric must be appro
mately (n1 1

2 )p, and thusAn becomes large, as the field
concentrated in the dielectric.

Once the fields have been determined, the response o
structure to the passage of an ultrarelativistic, horizonta
oriented line charge of constant density@re5ld(y
2y0)d(z)# within the vacuum gap (y0,a) can be calcu-
lated by energy balance. It can be shown that, for a lin
wake field @10# the net decelerating field on a line char
associated with a wake amplitude ofE0 is Edec5E0/2. We
tal

i-

the
y

ar

can equate this energy loss per unit length with the fi
energy per unit length left behind the ultrarelativistic line
charge density as

lEdec5E ~^uem&2^Sz&!dy, ~3.5!

whereuem5 1
2 @e(Ez

21Ey
2)1mHx

2# is the electromagnetic en
ergy density,Sz5(4p)21EyHx is the longitudinal Poynting
flux, andHx52eEy . The longitudinal wake field behind th
charge obtained from this expression is thus simply

Wz,n5Ez,n5
4pl

a1eAn
2~b2a!

cos@knz#Q~2z!, ~3.6!

where Q is the Heaviside function which explicitly show
the causal nature of the wake fields. It should be noted fr
this expression that the longitudinal wake field is in gene
largest for the lowest frequency mode. For the sla
symmetric, laser-pumped accelerator proposed in Ref.@2#,
however, the examples given have the device operating
higher-frequency mode of the structure. This could pos
beam-loading problem for this and other overmoded la
acceleration schemes, as the beam gains energy from a m
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56 7209ELECTROMAGNETIC WAKE FIELDS AND BEAM . . .
which it is poorly coupled to, in comparison to the mod
which it loses energy to in the form of wake fields.

To obtain the full wake field response from a beam w
an arbitrary longitudinal current profile@re5ld(y
2y0) f (z)#, we must perform a longitudinal convolutio
over the point response,

Wz5(
n
E

z

`

f ~z8!Wz,n~z82z!dz8. ~3.7!

The predictions of Eq.~3.7! have been verified by use o
numerical simulation of the wake fields in a planar structu
performed using a custom two-dimensional finite-differen
time domain electromagnetic simulation code. The beam
assumed to be a rigid current distribution, infinitesimally th
in the vertical (y) direction and with a fixed offset from th
symmetry planey50. The beam is also taken to be ultr
relativistic and traveling in the1z direction, with a Gaussian
longitudinal of standard deviationsz . The line charge den
sity of the beam inx is normalized toA2/psz statcoul/mm,
with sz in mm. The fields are advanced using the stand
leapfrog time integration algorithm. Figure 2 shows a fal
color contour map ofWz for a case similar to the infrare
wavelength examples given in Ref.@2#. One can clearly see
both the uniform speed-of-light phase fronts in the vacuu
and the Cerenkov nature of the wake field in the dielect
which displays the expected propagation angle. It should
be noted that, even though the beam current is asymm
with respect to they50 plane, the excited longitudinal wak
is nearly symmetric~after propagation away from the simu
lation boundary!, indicating symmetric coupling of the beam
fields to the dielectric and the accompanying suppressio
the transverse variations ofWz which lead to a transvers
wake field.

Figure 3 shows the net vertical wake fieldWy5Ey1Bx
excited by the beam in this case; one can see thatWy essen-
tially vanishes inside of the vacuum gap. The lack of f
cancellation ofEy1Bx is due mainly to the electric and mag
netic field centers in the calculation being one-half of bot
spatial and time step apart. Figure 4 displays a compar
between the simulation and analytical results forWz in this
case. The results are in good agreement, with some disc
ancies due to the transient fields found in the time-dom
simulation which are not present in the Fourier-based a
lytical treatment.

IV. WAKE FIELDS IN FINITE BEAMS:
FOURIER ANALYSIS

With the method of determining the wake-field couplin
established in Sec. III, we now turn our attention to wa
fields in finite beams. We begin by generalizing the abo
analysis to a beam of finite horizontal extent by examin
the wake fields due to beams of a harmonic~in x! charge
profile

re,kx
5l~kx!cos~kxx!d~y2y0!d~z!, ~4.1!
,
e
is

d
-

,
,

so
ric

of

l

a
on

p-
in
a-

e
g

wherel is now the peak line charge density. This profile c
be viewed as a Fourier component of a finite beam, i
re(x)5(re,kx

cos(kxx), where we implicitly assume that th
waveguide now has conducting sidewalls with separation
Lx ~allowed wave numberskx5mp/Lx , m51,3,5 . . . !, and
the beam distribution inx is centered and symmetric withi
these walls, as is shown in Fig. 5. Partial wake fields o
tained from this harmonic analysis can therefore be summ
to find the complete wake fields.

The longitudinal electric field associated with thenth
mode of the wake fields that the harmonic beam can cou
to has the following form in the vacuum region:

Ez,n5E0exp@ iknz#3 H cosh~kxy!

sinh~kxy! J 3cos~kxx!. ~4.2!

The cosh(kxy) dependence indicates the monopolelike, or
celerating, component~independent ofy in first order for
small vertical offsets! and the sinh(kxy) is the dipolelike, or
deflecting component, which couples to the longitudinal fie
with strength approximately linear iny and produces deflect
ing forces nearly independent ofy for small vertical offsets.
Note that these modes have explicitly been described
monopolelike and dipolelike—they are exact modes wh
display a specified multipole characteristic only in lowe
order iny.

Since the modes under consideration are not pure TM,
are hybrid modes, we must find the longitudinal magne
field to specify all the fields. In the gap region, this field h
the form

Bz,n5E0exp@ iknz#3 H sinh~kxy!

cosh~kxy!J 3sin~kxx!. ~4.3!

We again have obviously taken the ultrarelativistic lim
and in this case one must be very careful in finding the tra
verse components of the fields in the vacuum region. T
are

Ex,n52 i
knE0

2kx
exp@ iknz#3 H cosh~kxy!

sinh~kxy! J 3sin~kxx!,

Ey,n52 i
knE0

2kx
exp@ iknz#3 H sinh~kxy!

cosh~kxy!J 3cos~kxx!,

Bx,n5 iE0S kn

2kx
2

kx

kn
Dexp@ iknz#3 H sinh~kxy!

cosh~kxy!J
3cos~kxx!,

By,n52 iE0S kn

2kx
1

kx

kn
Dexp@ iknz#3 H cosh~kxy!

sinh~kxy! J
3sin~kxx!. ~4.4!

It should be noted that one cannot obtain the case of
uniform beam by taking the limitkx⇒0 in Eqs. ~4.4!, be-
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7210 56A. TREMAINE, J. ROSENZWEIG, AND P. SCHOESSOW
cause these expressions were obtained by assuming thkx
@kn /g, whereg5(12b2)21/2 is the Lorentz factor of the
beam. One also obtains immediately from Eqs.~4.4! the
gratifying result that the transverse forces on a relativis
particle of chargeq, due to the modes described by Eq
~4.2! and ~4.3!,

Fx,n[qWx,n5q~Ex,n2By,n!5 i
kx

kn
E0exp@ iknz#

3 H cosh~kxy!

sinh~kxy! J 3sin~kxx!,

Fy,n[qWy,n5q~Ey,n1Bx,n!52 i
kx

kn
E0exp@ iknz#

3H sinh~kxy!

cosh~kxy!J 3cos~kxx!, ~4.5!

vanish in the limit thatkx⇒0, as we had found in the uni
form line charge (kx50) beam case. The form of this resu
could have been directly deduced from the generali
Panofsky-Wenzel theorem given by Eq.~2.11!. Equation
~4.5! reinforces the primary point of the present analys
Simply stated, for highly asymmetric~for rms beam sizes
sx@sy , with associatedkx;sx

21! beams in slab-symmetri
structures, transverse wake fields are strongly suppresse
fact, since all wake fields are proportional to the line
charge densityl, the transverse wake fields scale~at constant
charge per bunch! as sx

22. This result mitigates one of th
major objections to use of high-frequency accelerating str
tures, that the transverse wake fields scale prohibitively w
frequency. This objection holds for cylindrically symmetr
structures, but can be greatly eased by use of slab struct
tit

q
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p
te
a

in
c
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d

.
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r
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h

es.

The fields in the dielectric, unlike those in the gap, can
found by standard wave-guide analysis; for brevity th
derivation is omitted. Following the same prescription us
to obtain Eqs.~3.1!–~3.3!, we obtain a transcendental expre
sion for the eigenvalues of the symmetric modes,

cot@A~e21!kn
22kx

2~b2a!#coth~kxa!A~e21!~kn /kx!
221

2
~e21!

2e S kn

kx
D 2

1150. ~4.6!

The eigenvalues of the antisymmetric modes are simply
tained by substitution of tanh(kxa) for coth(kxa) in Eq. ~2.11!.
The longitudinal wake fields associated with the symme
modes are

FIG. 4. Comparison of the values ofWz ~as a function ofz at
y51 mm! given by a time-domain electromagnetic field solver a
the predictions of Eqs.~3.6! and ~3.7!, for cases of Figs. 1 and 2.
Wz,n~kx!5
4p cosh~kxy0!cosh~kxy!cos~kxx!cos~knz!Q~2z!

sinh@2kxa#

2kx
F S kx

kn
D 2

11G1F e cosh2~kxa!

sin2@sn~b2a!#
1

sinh2~kxa!

cos2@sn~b2a!#GF S kx

sn
D 2

12G S b2a

2 D1•••

3•••
sin@2sn~b2a!#

4sn
F F sinh2~kxa!

cos2@sn~b2a!#
2

e cosh2~kxa!

sin2@sn~b2a!#G S kx

sn
D 2

1
4ekxsn

kn
2~e21!

cosh~kxa!sinh~kxa!

sin@sn~b2a!#cos@sn~b2a!#G ;
~4.7!
in
fter

ore
uite
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elds

ro-
g.,
those of the antisymmetric modes are obtained by subs
tion of sinh(kxỹ) for cosh(kxỹ), and vice versa, whereỹ takes
on the values ofa, y, andy0 in Eq. ~4.7!.

A discrete sum and convolution integral similar to E
~3.7! which sums over both symmetric and antisymmet
modes, as well as the beam charge distribution, must be
formed to obtain the full wake fields for a beam of fini
extent in configuration space. The resultant expressions h
also been compared to simulations of this periodic~in x!
system, withWy andWz obtained by both methods shown
u-

.

er-

ve

Fig. 6. The algorithm in the numerical simulations used
this case is based on discretizing the Maxwell equations a
Fourier transforming with respect tox. The discrepancies in
the two approaches due to transient effects are slightly m
pronounced in this case, but again the agreement is q
good. Parametric studies performed with these simulati
have also verified the suppression of transverse wake fi
for wide beams.

The Fourier analysis of the beam current is most app
priate for quantifying the behavior of the wake fields in, e.



o
of
or
or
h

ic
ex
si
a
a
i

the
as

he-
de
nite
he
by

ton

d to

m
e

me
lds

are
ture
en-
-

ble
s
e

n. In
e

ls
e

-

ar

la-

56 7211ELECTROMAGNETIC WAKE FIELDS AND BEAM . . .
millimeter-wave structures@1#, which have sidewalls not too
distant from the beam. It is also, as will be seen below, m
useful for analyzing the flute, or filamentation instability
asymmetric beams in slab-symmetric structures. This w
however, is motivated by the investigation of ultrash
wavelength~infrared to optical! accelerator structures suc
as those discussed in Ref.@2# in which the sidewalls are very
distant from the beam. In order to handle this case, in wh
the beam current is rather isolated horizontally, we now
amine the wake fields generated by a beam with a Gaus
profile. It should be noted that adoption of this physic
model has the additional motivation that the Gaussian be
is commonly encountered in practice, as it is produced
systems in thermal equilibrium.

FIG. 5. ~Color! Dielectric waveguide with conducting sidewal
of separation inLx for Fourier beam analysis, with allowed wav
numberskx5mp/Lx (m51,3,5 . . . ).

FIG. 6. Comparison of the values of~a! Wz and ~b! Wy ~as a
function of z at y51 mm! given by the time-domain electromag
netic field solver and the predictions of Eqs.~6! and ~12!, for the
identical structure and beam of Figs. 1–3, but with the beam ch
distribution modulated withkx50.4mm21.
st

k,
t

h
-
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V. FINITE-BEAM EFFECTS: GAUSSIAN
BEAM ANALYSIS

We now turn to the analysis of the wakes produced by
commonly encountered Gaussian horizontal beam profile
it traverses the very wide dielectric structure shown sc
matically in Fig. 1. The structure is assumed to be wi
enough such that the deviation in the wakes due to the fi
width effects can be ignored. In this limit, the solutions to t
wave equation can be found in the paraxial approximation
utilizing methods developed for analysis of Gaussian pho
beams in lasers and optical transport systems.

In the present case, the beam current profile is assume
have the form

re,wx,n~j!5l~wx,n!e2x2/wx,0
2

d~y2y0!d~z!, ~5.1!

where wx,0[&sx,b is, following the notation of Siegman
@11# for photon beam analysis, the horizontal particle bea
size, which is identical to the horizontal width of the wak
field extent inx directly behind the exciting line charge (z
502). This current will drive wake fields which are in
many ways similar to Gaussian photon beams, but with so
notable differences. In photon beam propagation, the fie
are derivable from the paraxial wave equation, and
Gaussian in both transverse coordinates. For the struc
induced wake fields, the fields will have a Gaussian dep
dence in only thex direction, where the paraxial approxima
tion in its familiar form (knwx,0.1) can still be employed.
Since the solution to the paraxial wave equation is separa
in the x and y coordinates with similar types of solution
~Hermite-Gaussian! for each coordinate, one might suppos
that the vertical dependence of the fields also be Gaussia
the limit thatwx@a, however, the vertical dependence of th

ge

FIG. 7. ~Color! Diagram of the wake-field diffraction pattern in
the x-z plane, for Gaussian beam and wake-field model calcu
tions.
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7212 56A. TREMAINE, J. ROSENZWEIG, AND P. SCHOESSOW
fields is expected to be negligible~of second order in the
small parametera/wx,0! and, as in the infinite beam an
structure case, the field has no significant vertical dep
dence in the vacuum gap.

As mentioned above, the horizontal dependence of
longitudinal electric field directly behind the infinitesimal
short beam takes the form of the current,Ez

;exp(2x2/wx,0
2 ). We note that this wake field can be viewe

as similar to the wake for the Fourier analysis, Eq.~4.2!, in
that it has a local maximum inx. In fact, for smallkxy,
cos(kxx), and exp(2x2/wx,n

2 ) are locally equivalent if we sub
stitute wx,n⇔kx/2. Once we have found this local equiv
lency, in fact, the Gaussian wakes can be found by subs
tion, exploiting the Fourier wakes as a model. The result
fields can be verified as being solutions to Maxwell eq
tions in the paraxial limit.

It should also be noted that the above comparison can
be done for the antisymmetric wake field in Eq.~4.2!. The
dependence of the dipolelike Fourier wake becomes linea
y for smallkxy. A linearly dependent wake can be seen to
an acceptable solution to the paraxial wave equation if i
noted that for smally, the first odd-symmetry Hermite
Gaussian solution is also linear. Thus the antisymme
Gaussian wake can be expressed asEz

}y exp(2x2/wx,n
2 ), which is equivalent to the dipole mod

described in Eq.~4.2!.
The wake fields created by the beam are to be initially

a waist, then diffract out behind the beam, as is shown sc
matically in Fig. 7. The waist, as well as the entire fie
pattern, moves forward inz at the speed of the beamnz
>c. It is again interesting to contrast this form with that of
laser beam. A focused laser beam envelope is minimized
spatially stationary waist, after which it diffracts away tran
versely. While the electromagnetic waist of the wake field
stationary in the beam rest frame, not the laboratory fra
the laser and wake fields hold in common the expected
havior that if one travels with a phase front, diffraction of t
fields is observed as time advances.

The full longitudinal~symmetric! wake field in the struc-
ture can be found from paraxial wave solutions to be

Ez,n5E0,ne2@x2/wx,n
2

~z!#2 ik@x2/Rn~z!#exp@ iknz1cn~z!#
~5.2!

wherecn(z)5tan21(z/zR,n) is the Guoy phase shift of a give
mode,zR,n5pwx,n

2 (0)/ln5knsx
2 is its Raleigh~diffraction!

length,Rn(z)5z@11(zR,n /z)2# is the local radius of curva
ture of the phase fronts, andwx,n

2 (z)5wx,0
2 @11(z/zR,n)2# is

the horizontal spot size. It should be emphasized that at
point of creation directly behind the beam the diffracti
wake field is at a waist. Here the beam size is a minimu
and the Guoy phase shift is most rapidly changing. In ligh
the dispersion relation Eq.~2.12!, this phase shift can be
viewed as equivalent to a longitudinal wave-number shift
the region of largest horizontal wave-numberkx .

Using the Fourier wake analysis as a guide, we found
remaining fields in the gap:
n-
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Bz,n5E0,n

2xy

wx,n
2 ~z!

e2@x2/wx,n
2

~z!#2 ik@x2/Rn~z!#exp@ iknz

1cn~z!#,

Ex,n52 i
E0,n

2
~knx!e2@x2/wx,n

2
~z!#2 ik@x2/Rn~z!exp@ iknz

1cn~z!#,

Ey,n52 i
E0,n

2
~kny!e2@x2/wx,n

2
~z!#2 ik@x2/Rn~z!exp@ iknz

1cn~z!#,

Bx,n5 i
E0,n

2 F12S 2

knwx,n~z! D
2G

3~kny!e2@x2/wx
2
~z!#2 ik@x2/Rn~z!#exp@ iknz1cn~z!#,

By,n52 i
E0,n

2 F11S 2

knwx,n~z! D
2G

3~knx!e2@x2/wx,n
2

~z!#2 ik@x2/Rn~z!#exp@ iknz1cn~z!#.

~5.3!

The transverse forces associated with these fields,

Fx,n[qWx,n5q~Ex,n2By,n!

5 iE0

2x

knwx,n
2 ~z!

e2x2/2sx
2
exp@ iknz1c~z!#,

Fy,n[qWy,n5q~Ey,n1Bx,n!52 iE0

2y

knwx,n
2 ~z!

3 e2y2/2sx
2

exp@ iknz1c~z!#, ~5.4!

again will diminish for very wide beams. This result is
good agreement with the analysis of the Fourier beam c
as well as the limiting infinite beam case.

Employing the same techniques as used to derive E
~3.3! and~4.6!, we find the transcendental eigenvalue expr
sion for the symmetric Gaussian mode to be

sx

a
cotF S ~e21!kn

22
1

sx
2D 1/2

~b2a!GA~e21!~knsx!
221

2
~e21!

2e
~knsx!

21150. ~5.5!

The longitudinal wake-field amplitude is similarly given b



a

2
2

sin@sn~b2a!#

4sn
G1 • • •

~5.6!

itudinal direction. As they start to diffract, energy

inal electric field is

~5.7!

~5.8!

GFb2a

2
2

sin@sn~b2a!#

4s G1 • • •

~5.9!
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2sx

2D1 a3

3sx
2 S 1
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2sx
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1
2D1F «

sin2@sn~b2a!#
1

1

2kn
2sx

2~«21!
S «

sin2@sn~b2a!#
2

4sna

sin@2sn~b2a!#
1

sn
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cos2@sn~b2a!#
DGFb2

3F a2
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2 cos2@sn~b2a!#

1
1

kn
2~«21!

S «sn
2

sin2@sn~b2a!#
1

4sna

sx
2 sin@2sn~b2a!#

1
a2

sx
2 cos2@sn~b2a!#

DGFb2a

2
1

sinn@s~b2a!#

4sn
G,

and was found using energy balance. The wake fields coming off the beam initially have all energy flowing in the long
flow is transferred to the transverse directions; thus it was necessary to calculate the wakes when at a waist.

As mentioned above, the Gaussian modes for an antisymmetric profile iny can also be found. The form of the longitud

Ez5E0

&y
vx,n~z!

e2@x2/wx,n
2

~z!#2ikn@x2/Rn~z!#exp@iknz1cn~z!#.

Following the prescription outlined above, the transverse wakes

Fx5ieE0

2&xy

knvx,n
3 ~z!

e2@x2/wx,n
2

~z!#2ikn@x2/Rn~z!# exp@iknz1cn~z!#,

Fy52ieE0

&
knvx,n~z!

e2@x2/wx,n
2

~z!#2ikn@x2/Rn~z!#exp@iknz1cn~z!#

have an associated amplitude of

Wn5
4pl0

aS121
1

kn
2sx

2D1 a3

3sx
2 S 1

2kn
2sx

211D1F «a2

sx
2 sin2@sn~b2a!#

1
1

2kn
2~«21!

S «a2

sx
4 sin2@sn~b2a!#

2
4sna

sx
2 sin@2sn~b2a!#

1
sn

2

cos2@sn~b2a!#D

3 F 1
2 cos2@sn~b2a!#

1
1
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2~«21!

S «sn
2a2

sx
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1
4sna
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and we again observe that for wide beams the dipole
mode transverse wake fields are considerably reduced.

This Gaussian wake analysis can easily be extende
include arbitrary beam profiles by using Hermite-Gauss
functions @11# as a basis set to represent the beam. T
allows the analysis of beams which are modulated inx, as in
the Fourier case, but with finite extent and no reference
existence of sidewalls. A useful result of this analysis is t
a beam withN horizontal modulations has an effective Ra
leigh length which is shortened by a factor ofAN. Thus
higher frequency-modulations on a beam create wakes w
diffract out more quickly, and the long range wake field
eventually dominated by the lowest spatial frequency~simple
Gaussian! component.

VI. TRANSVERSE INSTABILITIES
IN ASYMMETRIC BEAMS

With the analysis of the wake-field excitation comple
the wake-field-induced transverse instabilities in very asy
metric beams can now be analyzed. These instabilities
into two categories: the short-range, single-bunch be
breakup~BBU! instability which tends to ripple or ‘‘flute’’
the charge distribution inx with a fairly large wave numbe
(kx;a21), which couple most strongly to the structure b
diffract away quickly, and the long-range, multibunch BB
instability, in which the Gaussian wakes of the bunches a
whole, rather than horizontal Fourier structure of t
bunches, are dominant. These instabilities are analyzed
lowing the formalisms developed for the flute instability b
Whittum @12#, using our results on the Fourier componen
of the wakes, and for the multibunch BBU by Thompson a
Ruth @13# using the Gaussian wake analysis of Sec. V.

We begin by examining the flute instability, employin
the physical and mathematical model of the beam dynam
developed in Ref.@12# to analyze this type of instability in
the dense beam-plasma interaction. In this model, the b
is viewed in lowest order as a uniform slab lying symme
cally about the symmetry plane of the device. A more d
tailed analysis, in which the beam is not taken to be unifo
in x, with a harmonic perturbation, but instead is modeled
a Gaussian with periodic perturbations may be performed
use of Hermite-Gaussian functions. It should be emphas
that we do not mean to imply that we are discussing
physically uninteresting case of a uniform sheet beam wi
sharp cutoff horizontal edge, which would have significa
Fourier components which would drive BBU instabilit
This type of beam would not in general be found in, e.
high-energy linear collider beams derived from damp
rings, which are approximately thermally equilibrated in
phase planes, giving Gaussian beam profiles. Keeping
model’s applicability in mind, a vertical perturbationj(z,t)
of a small amplitude and harmonic~with wavenumberkx!
dependence inx is assumed, which can be shown@12# to be
equivalent to a harmonic charge-density perturbation. T
wake fields arising from this perturbation can then be cal
lated using the results of Sec. IV.

To calculate the evolution of the flute amplitudej(z,t),
we write the beam breakup equation@12#
e
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1gkbyGj~z,z!5E

0

z

dz8Wy8~z82z!j~z,z8!,

~6.1!

whereWy8[]yWy is the wake function produced by a ha
monic beam perturbation with wave numberkx and is pro-
portional to the]Fy,n /]y given by Eq.~4.5!, andkby is the
betatron wave number associated with the applied vert
focusing. Since we are considering beams with small ph
extent~in the fundamental accelerating wave!, Wy}sin(knz)
}knz. Following Whittum, the asymptotic flute amplitude fo
a coasting beam (g5constant) due to thenth antisymmetric
mode is found by a saddle-point analysis of Eq.~6.1! to be,
in the limit of strong focusing~instability growth lengthLg
satisfyingkbyLg.1!,

j~z,t !}exp
3)

4 S Y',nzt2

gkby
D 1/3

, ~6.2!

where

Y',n5
r e

4p2

N

szsx
c2kn

]Fy,n

]y
; ~6.3!

r e is the classical electron radius, andN is the number of
electrons per bunch. As an example, relevant to experim
tation in a 10.6-mm wavelength accelerator similar in desig
to that considered in Ref.@2#, we choose a structure an
beam with a55 mm, b56.05mm, sx5100mm, kby

55 cm21 ~equilibrium beta functionby,eq5kby
2152 mm!, N

5105, andg5100. Using the mode with highest coupling
the dipolelike mode~nearkx'a21! we find a growth length
of Lg58 cm, which justifies the strong focusing approxim
tion.

It should be possible to stabilize this instability by use
horizontal focusing of sufficient strength to mix the horizo
tal positions of the beam particles in a time shorter that
growth time. This is quantified by conditionkbxLg.1,
which implies that the horizontal betatron wave number m
scaled to the vertical by the ratiokbyLg , which in our ex-
ample yieldskbx>kby/40.

This ratio may appear to be arbitrarily chosen, but it
fact may be constrained by other considerations—prima
that the beam be in thermal equilibrium. Because the tr
verse wakes in this case couple thex and y motion in a
nonlinear fashion, one may expect that if the temperatur
different in the two dimensions that it would soon equaliz
In terms of standard beam characteristics, this proposed
quirementTx5Ty is equivalent toex /beq,x5ey /beq,y , or
ex5ey(kby /kbx)'ey(kbyLg). This in turn implies a con-
straint on the beam sizes, assx /sx5Akbxey /kbyex
'kbyLg , which is approximately 40 in our case. This is
borderline problem for our example, in thatsy'sx/40
52.5mm, which only one-fourth of the total vertical gap i
the structure. This potential problem, which demands rig
ous analysis in future work, certainly emphasizes the nee
have very strong vertical focusing in the device.

The problem of instabilities due to long range wake fie
can be studied using the multibunch BBU formalism pre
ously developed by Thompson and Ruth@13#. We employ a
strongly damped wake approximation, the daisy-ch
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model, where a bunch is only affected by the wake fie
from the previous bunch. For optical accelerators, the h
zontal diffraction of the wakes make this model promisin
on the other hand, since each bucket will undoubtedly
filled in such a short wavelength device, the wakes mus
very heavily damped or have large frequency spreads in
relevant modes for the model to be accurate. We addition
assume that the high-frequency wakes responsible for
single-bunch flute instability are ignorable from the mul
bunch point of view, again because the enhanced diffrac
of these components of the wake fields quickly dampen t
effect on the bunch train.

In order to include the effects of acceleration and ad
batic damping, it is convenient to define an effective dista
zeff5kby

21(0)*0
zkby(z8)dz8, where the betatron wave numb

now is considered as a function a distancez down the struc-
ture. Assumingk(z)5Ag(0)/g(z)k(0), with the approxi-
mation that the energy is much greater at the end of
structure than at the beginning, the effective distance
comeszeff52Ag0z/g8, where g85eEacc/mec

2 is the nor-
malized accelerating gradient. The equations of motion in
effective length approximation become@13#

]2y1

]zeff
2 1kby

2 y150,

]2yn

]zeff
2 1kby

2 yn5
Nre

g

1

2psx

]Fy

]y
yn21 , ~6.4!

where the first bunch is explicitly unaffected by transve
wake fields. Assuming solutions of the formgn5Aneikz, it is
found the deflecting amplitudeAn grows with effec-
tive growth length is approximately Lgeff
54psx(g/Nre)k(]Fy /]y)21. We again use the parameterssx
5100mm, N5105, andg(0)5100, which assuming ever
optical accelerating ‘‘bucket’’ is filled, and that the accele
ating gradient iseEacc51 GeV/m, implies we have a beam
loadedQ5103, similar to the expected unloadedQ of the
optical structure itself@2#. For kby55 cm21, the growth
length of the multibunch BBU instability is 15 cm. This
relatively gentle growth, which can be controlled by a va
ety of methods@13#, including detuning of the dipole mod
frequencies, and tuning the strongest frequencies near
integer harmonics of the accelerating frequency, thus plac
the bunches near zero crossings of the dipole-mode wak

VII. DISCUSSION

The results we have obtained above allow much gre
freedom in imagining linear accelerator designs at mu
shorter wavelengths, as they mitigate the scaling@14# of the
transverse wake coupling strength which limits the curren
these devices, fromW'8 }k'

3 }k0
3 ~k' is the transverse wav

number of the mode, analogous to our presentkx! in the
cylindrical case, toW'8 }kx

3}sx
23 ~at a constant beam

charge!, independent of accelerating wavelength in the s
geometry for the case of multibunch BBU. The scaling of t
flute instability is is a bit less dramatic,W'8 }kx

3}sx
22k0 , and

indeed we see that the growth of the flute instability is a
stronger than for multibunch BBU.
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Alternatively, if we allow the beam charge to be varie
one can see that, by spreading the beam out in one dimen
while keeping efficient coupling of the accelerating wave
the structure in the narrow dimension, much more charge
bunch can be accelerated. This comes at a price, of cou
which is that the electromagnetic stored energy is mu
larger in the case of a slab-symmetric device as opposed
cylindrically symmetric accelerator of equivalent beam ho
dimension—the shunt impedance of the slab-symmetric
celerator is very low. At optical or infrared wavelength
however, the stored energy is not a problem, as laser pow
large enough to drive ultrahigh accelerating fields in sla
symmetric structure are easily obtainable, and the useful fi
amplitudes are limited by structure breakdown consid
ations@15#. In the slab-symmetric case the low shunt impe
ance can be understood as being due to a large numb
equivalent cylindrically symmetric accelerators operating
parallel, yielding a small impedance.

This multiple-channel, parallel accelerator is a use
analogy for helping understand the transverse wake field
well. It is true that the transverse impedance that the be
‘‘sees’’ at the highest transverse coupling to the struct
(kx'a21) is very close to that of the cylindrical structure o
the same vacuum radiusa, and so the beam breakup
similar—the flute instability is nearly identical for the po
tion of the beam withinDx;2a as for single-bunch BBU for
the same charge beam in the equivalent cylindrically sy
metric structure. The advantage of the slab-symmetric st
ture is twofold, however; it allows much more beam char
to be accelerated for the equivalent BBU problem, and
flute BBU can be stabilized by a mechanism, horizontal m
ing, that is unavailable in the cylindrically symmetric stru
ture. In addition, if the flute instability is stabilized, then th
multibunch BBU is much more stable, for equivalent bea
loading, than the cylindrically symmetric accelerator.

To illustrate this point, we give a list of parameters d
scribing two equivalent designs with slab and cylindrical g
ometry, respectively, in Table I. In both designs, we obtai
linear accelerator with an average accelerating gradient
GeV/m, wavelengthl052p/k0510.6mm, the beam half-
gapa55 mm, and beam loading quality factorQ51000. It
can be seen that in the slab case, with a beam width ofsx
5100mm, much higher average current can be accelera

TABLE I. Comparison multibunch BBU of a cylindrical and
slab-symmetric linear accelerator with an average accelerating
dient of 1 GeV/m, fundamental wavelengthl052p/k0

510.6mm, a52.5mm, and beam loading quality factorQ
51000; only the lowest frequency dipolelike mode is consider
with sx5100mm in the slab case. Comparison parameters: aver
current eNc/l0 , transverse wake strengthW'8 /eN, and BBU
growth lengthLg .

Slab case Cylindrical case

Average current 490 mA 16 mA
Transverse wake

~dominant dipole!
30 V/~mm2 fC! 105 V/~mm2 fC!

Multibunch BBU
growth length

15 cm 1.4 cm
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at this beam loading level, and it can be propagated sta
longer.

VIII. CONCLUSIONS

In conclusion, we have theoretically and computationa
analyzed the transverse wake fields in a slab-symme
dielectric-loaded structure. We have found and quantified
suppression of the transverse wake fields for wide beam
these structures, using infinite beam, harmonic beam,
Gaussian beam models, and made an analysis of the b
breakup instability in this type of structure. The addition
advantages of using wide beams in a slab symmetric st
ture for accelerating larger beam currents was noted a
byproduct of this analysis. While we have concentrated
laser-driven optical or infrared accelerators, as they are lik
to use dielectrics, the conclusions reached are quite gen
and should be easily applied to submillimeter wave meta
cavity structures as well.
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c

The results we have presented allow more serious con
eration of short-wavelength advanced accelerator schem
which have potential application to linear colliders as well
radiation-producing accelerators~free-electron lasers, Comp
ton scattering x-ray sources, etc.!. These advantages, we b
lieve, present significant motivation for further theoretic
and experimental work in this field; we are presently wo
ing on a test of these results using asymmetric, high cha
beams, which produce cm wavelength wake fields, as we
an improved analysis of instabilities in slab-symmetric acc
erators.
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